Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.465
Filtrar
1.
Scand J Pain ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557595

RESUMO

OBJECTIVES: Despite the fact that fibromyalgia, a widespread disease of the musculoskeletal system, has no specific treatment, patients have shown improvement after pharmacological intervention. Pregabalin has demonstrated efficacy; however, its adverse effects may reduce treatment adherence. In this context, neuromodulatory techniques such as transcranial direct current stimulation (tDCS) may be employed as a complementary pain-relieving method. Consequently, the purpose of this study was to evaluate the effect of pregabalin and tDCS treatments on the behavioral and biomarker parameters of rats submitted to a fibromyalgia-like model. METHODS: Forty adult male Wistar rats were divided into two groups: control and reserpine. Five days after the end of the administration of reserpine (1 mg/kg/3 days) to induce a fibromyalgia-like model, rats were randomly assigned to receive either vehicle or pregabalin (30 mg/kg) along with sham or active- tDCS treatments. The evaluated behavioral parameters included mechanical allodynia by von Frey test and anxiety-like behaviors by elevated plus-maze test (time spent in opened and closed arms, number of entries in opened and closed arms, protected head-dipping, unprotected head-dipping [NPHD], grooming, rearing, fecal boluses). The biomarker analysis (brain-derived neurotrophic factor [BDNF] and tumor necrosis factor-α [TNF-α]) was performed in brainstem and cerebral cortex and in serum. RESULTS: tDCS reversed the reduction in the mechanical nociceptive threshold and the decrease in the serum BDNF levels induced by the model of fibromyalgia; however, there was no effect of pregabalin in the mechanical threshold. There were no effects of pregabalin or tDCS found in TNF-α levels. The pain model induced an increase in grooming time and a decrease in NPHD and rearing; while tDCS reversed the increase in grooming, pregabalin reversed the decrease in NPHD. CONCLUSIONS: tDCS was more effective than pregabalin in controlling nociception and anxiety-like behavior in a rat model-like fibromyalgia. Considering the translational aspect, our findings suggest that tDCS could be a potential non-pharmacological treatment for fibromyalgia.


Assuntos
Fibromialgia , Estimulação Transcraniana por Corrente Contínua , Humanos , Adulto , Ratos , Masculino , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Fibromialgia/tratamento farmacológico , Pregabalina/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Ratos Wistar , Fator de Necrose Tumoral alfa , Nociceptividade/fisiologia , Reserpina , Dor , Ansiedade/tratamento farmacológico , Biomarcadores
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602739

RESUMO

Non-invasive brain stimulations have drawn attention in remediating memory decline in older adults. However, it remains unclear regarding the cognitive and neural mechanisms underpinning the neurostimulation effects on memory rehabilitation. We evaluated the intervention effects of 2-weeks of neurostimulations (high-definition transcranial direct current stimulation, HD-tDCS, and electroacupuncture, EA versus controls, CN) on brain activities and functional connectivity during a working memory task in normally cognitive older adults (age 60+, n = 60). Results showed that HD-tDCS and EA significantly improved the cognitive performance, potentiated the brain activities of overlapping neural substrates (i.e. hippocampus, dlPFC, and lingual gyrus) associated with explicit and implicit memory, and modulated the nodal topological properties and brain modular interactions manifesting as increased intramodular connection of the limbic-system dominated network, decreased intramodular connection of default-mode-like network, as well as stronger intermodular connection between frontal-dominated network and limbic-system-dominated network. Predictive model further identified the neuro-behavioral association between modular connections and working memory. This preliminary study provides evidence that noninvasive neurostimulations can improve older adults' working memory through potentiating the brain activity of working memory-related areas and mediating the modular interactions of related brain networks. These findings have important implication for remediating older adults' working memory and cognitive declines.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Vida Independente , Encéfalo/diagnóstico por imagem , Sistema Límbico
3.
Neural Plast ; 2024: 2512796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585306

RESUMO

Background: Stroke is a common and frequently occurring disease among middle-aged and elderly people, with approximately 55%-75% of patients remaining with upper limb dysfunction. How to promote the recovery of motor function at an early stage is crucial to the life of the patient. Objectives: This study aimed to investigate whether high-definition transcranial direct current stimulation (HD-tDCS) of the primary motor cortex (M1) functional area in poststroke patients in the subacute phase is more effective in improving upper limb function than conventional tDCS. Methods: This randomized, sham-controlled clinical trial included 69 patients with subcortical stroke. They were randomly divided into the HD-tDCS, anodal tDCS (a-tDCS), and sham groups. Each group received 20 sessions of stimulation. The patients were assessed using the Action Research Arm Test, Fugl-Meyer score for upper extremities, Motor Function Assessment Scale, and modified Barthel index (MBI) pretreatment and posttreatment. Results: The intragroup comparison scores improved after 4 weeks of treatment. The HD-tDCS group showed a slightly greater, but nonsignificant improvement as compared to a-tDCS group in terms of mean change observed in function of trained items. The MBI score of the HD-tDCS group was maintained up to 8 weeks of follow-up and was higher than that in the a-tDCS group. Conclusion: Both HD-tDCS and a-tDCS can improve upper limb motor function and daily activities of poststroke patients in the subacute stage. This trial is registered with ChiCTR2000031314.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Idoso , Pessoa de Meia-Idade , Humanos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/terapia , Extremidade Superior , Resultado do Tratamento
4.
JAMA Netw Open ; 7(4): e246589, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635271

RESUMO

Importance: Perioperative anxiety is prevalent among patients undergoing surgical treatment of cancer and often influences their prognosis. Transcranial direct current stimulation (tDCS) has shown potential in the treatment of various anxiety-related disorders, but data on the impact of tDCS on perioperative anxiety are limited. Objective: To evaluate the effect of tDCS in reducing perioperative anxiety among patients undergoing laparoscopic colorectal cancer (CRC) resection. Design, Setting, And Participants: This randomized clinical trial was conducted from March to August 2023 at the Affiliated Hospital of Xuzhou Medical University. Patients aged 18 years or older undergoing elective laparoscopic radical resection for CRC were randomly assigned to either the active tDCS group or the sham tDCS group. Intention-to-treat data analysis was performed in September 2023. Interventions: Patients were randomly assigned to receive 2 sessions of either active tDCS or sham tDCS over the left dorsolateral prefrontal cortex on the afternoon of the day before the operation and in the morning of the day of operation. Main Outcomes and Measures: The main outcome was the incidence of perioperative anxiety from the day of the operation up to 3 days after the procedure, as measured using the Hospital Anxiety and Depression Scale-Anxiety (HADS-A) subscale (range: 0-21, with higher scores indicating more anxiety). Secondary outcomes included postoperative delirium (assessed by the Confusion Assessment Method or Confusion Assessment Method intensive care unit scale); pain (assessed by the 10-point Numeric Rating Scale [NRS], with scores ranging from 0 [no pain] to 10 [worst pain]); frailty (assessed by the Fatigue, Resistance, Ambulation, Illness and Loss of Weight [FRAIL] Index, with scores ranging from 0 [most robust] to 5 [most frail]; and sleep quality (assessed by the Pittsburgh Sleep Quality Index [PSQI], with scores ranging from 0 to 21 and higher scores indicating worse sleep quality) after the 2 sessions of the tDCS intervention. Results: A total of 196 patients (mean [SD] age, 63.5 [11.0] years; 124 [63.3%] men) were recruited and randomly assigned to the active tDCS group (98 patients) or the sham tDCS group (98 patients). After the second tDCS intervention on the day of the operation, the incidence of perioperative anxiety was 38.8% in the active tDCS group and 70.4% in the sham tDCS group (relative risk, 0.55 [95% CI, 0.42-0.73]; P < .001). Patients in the active tDCS group vs the sham tDCS group were less likely to have postoperative delirium (8.2% vs 25.5%) and, at 3 days after the operation, had lower median (IQR) pain scores (NRS, 1.0 [1.0-1.0] vs 2.0 [2.0-2.0]), better median (IQR) sleep quality scores (PSQI, 10.5 [10.0-11.0] vs 12.0 [11.0-13.0]), and lower median (IQR) FRAIL Index (2.0 [1.0-2.0] vs 2.0 [2.0-3.0]). Conclusions and Relevance: Findings of this randomized clinical trial indicate that administration of 2 preoperative sessions of tDCS was associated with a decreased incidence of perioperative anxiety in patients undergoing elective CRC resection. Active tDCS was also associated with better anxiety scores, pain levels, and sleep quality as well as reduced postoperative delirium and frailty. The findings suggest that tDCS may be a novel strategy for improving perioperative anxiety in patients undergoing CRC resection. Trial Registration: Chinese Clinical Trial Register Identifier: ChiCTR2300068859.


Assuntos
Neoplasias Colorretais , Delírio do Despertar , Fragilidade , Laparoscopia , Estimulação Transcraniana por Corrente Contínua , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ansiedade , Fadiga , Dor , Idoso
5.
BMC Neurol ; 24(1): 132, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641827

RESUMO

BACKGROUND: Post-stroke cognitive impairment (PSCI) is the focus and difficulty of poststroke rehabilitation intervention with an incidence of up to 61%, which may be related to the deterioration of cerebrovascular function. Computer-aided cognitive training (CACT) can improve cognitive function through scientific training targeting activated brain regions, becoming a popular training method in recent years. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, can regulate the cerebral vascular nerve function, and has an effect on the rehabilitation of cognitive dysfunction after stroke. This study examined the effectiveness of both CACT and tDCS on cognitive and cerebrovascular function after stroke, and explored whether CACT combined with tDCS was more effective. METHODS: A total of 72 patients with PSCI were randomly divided into the conventional cognitive training (CCT) group (n = 18), tDCS group (n = 18), CACT group (n = 18), and CACT combined with tDCS group (n = 18). Patients in each group received corresponding 20-minute treatment 15 times a week for 3 consecutive weeks. Montreal Cognitive Assessment (MoCA) and the Instrumental Activities of Daily Living Scale (IADL) were used to assess patients' cognitive function and the activities of daily living ability. Transcranial Doppler ultrasound (TCD) was used to assess cerebrovascular function, including cerebral blood flow velocity (CBFV), pulse index (PI), and breath holding index (BHI). These outcome measures were measured before and after treatment. RESULTS: Compared with those at baseline, both the MoCA and IADL scores significantly increased after treatment (P < 0.01) in each group. There was no significantly difference in efficacy among CCT, CACT and tDCS groups. The CACT combined with tDCS group showed greater improvement in MoCA scores compared with the other three groups (P < 0.05), especially in the terms of visuospatial and executive. BHI significantly improved only in CACT combined with tDCS group after treatment (p ≤ 0.05) but not in the other groups. Besides, no significant difference in CBFV or PI was found before and after the treatments in all groups. CONCLUSION: Both CACT and tDCS could be used as an alternative to CCT therapy to improve cognitive function and activities of daily living ability after stroke. CACT combined with tDCS may be more effective improving cognitive function and activities of daily living ability in PSCI patients, especially visuospatial and executive abilities, which may be related to improved cerebral vasomotor function reflected by the BHI. TRIAL REGISTRATION NUMBER: The study was registered in the Chinese Registry of Clinical Trials (ChiCTR2100054063). Registration date: 12/08/2021.


Assuntos
Disfunção Cognitiva , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Atividades Cotidianas , Reabilitação do Acidente Vascular Cerebral/métodos , Recuperação de Função Fisiológica , Treino Cognitivo , Acidente Vascular Cerebral/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Computadores
6.
PeerJ ; 12: e17144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584936

RESUMO

Background: Transcranial alternating current stimulation (tACS) is a brain stimulation method for modulating ongoing endogenous oscillatory activity at specified frequency during sensory and cognitive processes. Given the overlap between event-related potentials (ERPs) and event-related oscillations (EROs), ERPs can be studied as putative biomarkers of the effects of tACS in the brain during cognitive/sensory task performance. Objective: This preliminary study aimed to test the feasibility of individually tailored tACS based on individual P3 (latency and frequency) elicited during a cued premature response task. Thus, tACS frequency was individually tailored to match target-P3 ERO for each participant. Likewise, the target onset in the task was adjusted to match the tACS phase and target-P3 latency. Methods: Twelve healthy volunteers underwent tACS in two separate sessions while performing a premature response task. Target-P3 latency and ERO were calculated in a baseline block during the first session to allow a posterior synchronization between the tACS and the endogenous oscillatory activity. The cue and target-P3 amplitudes, delta/theta ERO, and power spectral density (PSD) were evaluated pre and post-tACS blocks. Results: Target-P3 amplitude significantly increased after activetACS, when compared to sham. Evoked-delta during cue-P3 was decreased after tACS. No effects were found for delta ERO during target-P3 nor for the PSD and behavioral outcomes. Conclusion: The present findings highlight the possible effect of phase synchronization between individualized tACS parameters and endogenous oscillatory activity, which may result in an enhancement of the underlying process (i.e., an increase of target-P3). However, an unsuccessful synchronization between tACS and EEG activity might also result in a decrease in the evoked-delta activity during cue-P3. Further studies are needed to optimize the parameters of endogenous activity and tACS synchronization. The implications of the current results for future studies, including clinical studies, are further discussed since transcranial alternating current stimulation can be individually tailored based on endogenous event-related P3 to modulate responses.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroencefalografia , Estudos de Viabilidade , Encéfalo/fisiologia , Potenciais Evocados/fisiologia
7.
J Int Med Res ; 52(4): 3000605241238066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603599

RESUMO

Neurorehabilitation devices and technologies are crucial for enhancing stroke recovery. These include noninvasive brain stimulation devices that provide repetitive transcranial magnetic stimulation or transcranial direct current stimulation, which can remodulate an injured brain. Technologies such as robotics, virtual reality, and telerehabilitation are suitable add-ons or complements to physical therapy. However, the appropriate application of these devices and technologies, which target specific deficits and stages, for stroke therapy must be clarified. Accordingly, a literature review was conducted to evaluate the theoretical and practical evidence on the use of neurorehabilitation devices and technologies for stroke therapy. This narrative review provides a practical guide for the use of neurorehabilitation devices and describes the implications of use and potential integration of these devices into healthcare.


Assuntos
Reabilitação Neurológica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana , Encéfalo
8.
BMJ Open ; 14(4): e082764, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604630

RESUMO

INTRODUCTION: Poststroke cognitive impairment is a common complication in stroke survivors, seriously affecting their quality of life. Therefore, it is crucial to improve cognitive function of patients who had a stroke. Transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) are non-invasive, safe treatments with great potential to improve cognitive function in poststroke patients. However, further improvements are needed in the effectiveness of a single non-invasive brain stimulation technique for cognitive rehabilitation. This study protocol aims to investigate the effect and neural mechanism of the combination of tDCS and taVNS on cognitive function in patients who had a stroke. METHODS AND ANALYSIS: In this single-centre, prospective, parallel, randomised controlled trial, a total of 66 patients with poststroke cognitive impairment will be recruited and randomly assigned (1:1:1) to the tDCS group, the taVNS group and the combination of tDCS and taVNS group. Each group will receive 30 min of treatment daily, five times weekly for 3 weeks. Primary clinical outcome is the Montreal Cognitive Assessment. Secondary clinical outcomes include the Mini-Mental State Examination, Stroop Colour Word Test, Trail Marking Test, Symbol Digit Modalities Test and Modified Barthel Index. All clinical outcomes, functional MRI and diffusion tensor imaging will be measured at preintervention and postintervention. ETHICS AND DISSEMINATION: The trial has been approved by the Ethics Committee of the First Affiliated Hospital of Yangtze University (approval no: KY202390). The results will be submitted for publication in peer-reviewed journals or at scientific conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300076632.


Assuntos
Disfunção Cognitiva , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Estimulação do Nervo Vago , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Imagem de Tensor de Difusão , Estudos Prospectivos , Estimulação do Nervo Vago/métodos , Qualidade de Vida , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
J Neurosci Res ; 102(4): e25330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622870

RESUMO

Metacognition encompasses the capability to monitor and control one's cognitive processes, with metamemory and metadecision configuring among the most studied higher order functions. Although imaging experiments evaluated the role of disparate brain regions, neural substrates of metacognitive judgments remain undetermined. The aim of this systematic review is to summarize and discuss the available evidence concerning the neural bases of metacognition which has been collected by assessing the effects of noninvasive brain stimulation (NIBS) on human subjects' metacognitive capacities. Based on such literature analysis, our goal is, at first, to verify whether prospective and retrospective second-order judgments are localized within separate brain circuits and, subsequently, to provide compelling clues useful for identifying new targets for future NIBS studies. The search was conducted following the preferred reporting items for systematic reviews and meta-analyses guidelines among PubMed, PsycINFO, PsycARTICLES, PSYNDEX, MEDLINE, and ERIC databases. Overall, 25 studies met the eligibility criteria, yielding a total of 36 experiments employing transcranial magnetic stimulation and 16 ones making use of transcranial electrical stimulation techniques, including transcranial direct current stimulation and transcranial alternating current stimulation. Importantly, we found that both perspective and retrospective judgments about both memory and perceptual decision-making performances depend on the activation of the anterior and lateral portions of the prefrontal cortex, as well as on the activity of more caudal regions such as the premotor cortex and the precuneus. Combining this evidence with results from previous imaging and lesion studies, we advance ventromedial prefrontal cortex as a promising target for future NIBS studies.


Assuntos
Metacognição , Estimulação Transcraniana por Corrente Contínua , Humanos , Metacognição/fisiologia , Julgamento/fisiologia , Estudos Prospectivos , Estudos Retrospectivos , Encéfalo
10.
Sci Rep ; 14(1): 9094, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643299

RESUMO

Transcranial direct current stimulation (tDCS) can be used to non-invasively augment cognitive training. However, the benefits of tDCS may be due in part to placebo effects, which have not been well-characterized. The purpose of this study was to determine whether tDCS can have a measurable placebo effect on cognitive training and to identify potential sources of this effect. Eighty-three right-handed adults were randomly assigned to one of three groups: control (no exposure to tDCS), sham tDCS, or active tDCS. The sham and active tDCS groups were double-blinded. Each group performed 20 min of an adapted Corsi Block Tapping Task (CBTT), a visuospatial working memory task. Anodal or sham tDCS was applied during CBTT training in a right parietal-left supraorbital montage. After training, active and sham tDCS groups were surveyed on expectations about tDCS efficacy. Linear mixed effects models showed that the tDCS groups (active and sham combined) improved more on the CBTT with training than the control group, suggesting a placebo effect of tDCS. Participants' tDCS expectations were significantly related to the placebo effect, as was the belief of receiving active stimulation. This placebo effect shows that the benefits of tDCS on cognitive training can occur even in absence of active stimulation. Future tDCS studies should consider how treatment expectations may be a source of the placebo effect in tDCS research, and identify ways to potentially leverage them to maximize treatment benefit.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Memória de Curto Prazo/fisiologia , Efeito Placebo , Mãos , Córtex Pré-Frontal/fisiologia , Método Duplo-Cego
11.
Sci Rep ; 14(1): 8035, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580671

RESUMO

Alpha oscillations have been implicated in time perception, yet a consensus on their precise role remains elusive. This study directly investigates this relationship by examining the impact of alpha oscillations on time perception. Resting-state EEG recordings were used to extract peak alpha frequency (PAF) and peak alpha power (PAP) characteristics. Participants then performed a time generalization task under transcranial alternating current stimulation (tACS) at frequencies of PAF-2, PAF, and PAF+2, as well as a sham condition. Results revealed a significant correlation between PAP and accuracy, and between PAF and precision of one-second time perception in the sham condition. This suggests that alpha oscillations may influence one-second time perception by modulating their frequency and power. Interestingly, these correlations weakened with real tACS stimulations, particularly at higher frequencies. A second analysis aimed to establish a causal relationship between alpha peak modulation by tACS and time perception using repeated measures ANOVAs, but no significant effect was observed. Results were interpreted according to the state-dependent networks and internal clock model.


Assuntos
Percepção do Tempo , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroencefalografia
12.
Sci Rep ; 14(1): 8064, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580697

RESUMO

The causal role of the cerebral hemispheres in positive and negative emotion processing remains uncertain. The Right Hemisphere Hypothesis proposes right hemispheric superiority for all emotions, while the Valence Hypothesis suggests the left/right hemisphere's primary involvement in positive/negative emotions, respectively. To address this, emotional video clips were presented during dorsolateral prefrontal cortex (DLPFC) electrical stimulation, incorporating a comparison of tDCS and high frequency tRNS stimulation techniques and manipulating perspective-taking (first-person vs third-person Point of View, POV). Four stimulation conditions were applied while participants were asked to rate emotional video valence: anodal/cathodal tDCS to the left/right DLPFC, reverse configuration (anodal/cathodal on the right/left DLPFC), bilateral hf-tRNS, and sham (control condition). Results revealed significant interactions between stimulation setup, emotional valence, and POV, implicating the DLPFC in emotions and perspective-taking. The right hemisphere played a crucial role in both positive and negative valence, supporting the Right Hemisphere Hypothesis. However, the complex interactions between the brain hemispheres and valence also supported the Valence Hypothesis. Both stimulation techniques (tDCS and tRNS) significantly modulated results. These findings support both hypotheses regarding hemispheric involvement in emotions, underscore the utility of video stimuli, and emphasize the importance of perspective-taking in this field, which is often overlooked.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Pré-Frontal/fisiologia , Emoções/fisiologia , Córtex Pré-Frontal Dorsolateral , Incerteza
13.
Sci Rep ; 14(1): 7865, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570619

RESUMO

Maintaining vigilance is essential for many everyday tasks, but over time, our ability to sustain it inevitably decreases, potentially entailing severe consequences. High-definition transcranial direct current stimulation (HD-tDCS) has proven to be useful for studying and improving vigilance. This study explores if/how cognitive load affects the mitigatory effects of HD-tDCS on the vigilance decrement. Participants (N = 120) completed a modified ANTI-Vea task (single or dual load) while receiving either sham or anodal HD-tDCS over the right posterior parietal cortex (rPPC). This data was compared with data from prior studies (N = 120), where participants completed the standard ANTI-Vea task (triple load task), combined with the same HD-tDCS protocol. Against our hypotheses, both the single and dual load conditions showed a significant executive vigilance (EV) decrement, which was not affected by the application of rPPC HD-tDCS. On the contrary, the most cognitively demanding task (triple task) showed the greatest EV decrement; importantly, it was also with the triple task that a significant mitigatory effect of the HD-tDCS intervention was observed. The present study contributes to a more nuanced understanding of the specific effects of HD-tDCS on the vigilance decrement considering cognitive demands. This can ultimately contribute to reconciling heterogeneous effects observed in past research and fine-tuning its future clinical application.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Tempo de Reação/fisiologia , Vigília , Lobo Parietal/fisiologia , Cognição/fisiologia
14.
Trials ; 25(1): 200, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509589

RESUMO

BACKGROUND: The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS: The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION: The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.


Assuntos
Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Doença de Parkinson/complicações , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos , Qualidade de Vida , Terapia por Exercício/métodos , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Syst Rev ; 13(1): 92, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509623

RESUMO

BACKGROUND: Antidepressants, noninvasive brain stimulation (NIBS), and their combination are commonly used in routine clinical practice. Nevertheless, there is a continuous dispute regarding whether the effectiveness of NIBS in combination with antidepressants exceeds that of antidepressants alone. This meta-analysis aimed to evaluate the existing evidence and draw a definitive conclusion on this issue. METHODS: We conducted a comprehensive search of five databases: Embase, PubMed, Web of Science, SinoMed, and the Cochrane Database of Randomized Controlled Trials. The search was conducted until October 6, 2023. The primary outcomes were the pre- and post-intervention depression and anxiety scores. Secondary outcomes included dropout rates, response rates, and certain levels of neurotransmitters [ 5-hydroxytryptamine (5-HT), dopamine (DA), and gamma-aminobutyric acid (GABA)] at the end of the intervention. Subgroup, meta-regression, and sensitivity analyses were performed to explore the sources of heterogeneity. The data were analysed using R 4.2.2. RESULTS: We included 18 RCTs [1357 participants; 11 studies used repetitive transcranial magnetic stimulation (rTMS) and 7 studies used transcranial direct current stimulation (tDCS)]. The follow-up duration varied from two weeks to three months. Overall, whether in combination with rTMS or tDCS, antidepressants proved more effective in alleviating depressive symptoms compared to when used as monotherapy. However, this advantage was not evident during the follow-up period. (p > 0.05). And the combination's efficacy in improving anxiety was found to be lacking. Post-treatment serum levels of 5-HT, DA, and GABA were higher in the rTMS group were higher than antidepressant medication group (p < 0.05). Furthermore, subgroup analysis results indicated that only the rTMS + antidepressant medication treatment significantly improved remission and remission rates. The meta-regression results showed that the type of antidepressant and the sex of the participants had a significant association with the depression score. CONCLUSION: Combination treatment with NIBS was significantly more effective in improving depression symptoms than medication alone. rTMS combined with antidepressants appears to be more effective in improving response and remission rates. However, efficacy may be influenced by the type of medicine used in combination, and long-term efficacy data is lacking. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42023388259.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Depressão/tratamento farmacológico , Serotonina , Ensaios Clínicos Controlados Aleatórios como Assunto , Antidepressivos/uso terapêutico , Estimulação Magnética Transcraniana/métodos , Ácido gama-Aminobutírico , Encéfalo/fisiologia
16.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431908

RESUMO

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Selênio , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Neuroproteção/fisiologia , Proteína 2 Associada à Membrana da Vesícula , Selenoproteína P , Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Glucose/metabolismo , Proteínas Qa-SNARE
17.
Sci Rep ; 14(1): 7600, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556535

RESUMO

Children with attention deficit-hyperactivity disorder (ADHD) have impaired hot and cold executive functions, which is thought to be related to impaired ventromedial and dorsolateral prefrontal cortex (vmPFC and dlPFC) functions. The present study aimed to assess the impact concurrent stimulation of dlPFC and vmPFC through transcranial random noise stimulation (tRNS), a non-invasive brain stimulation tool which enhances cortical excitability via application of alternating sinusoidal currents with random frequencies and amplitudes over the respective target regions on hot and cold executive functions. Eighteen children with ADHD received real and sham tRNS over the left dlPFC and the right vmPFC in two sessions with one week interval. The participants performed Circle Tracing, Go/No-Go, Wisconsin Card Sorting, and Balloon Analogue Risk Tasks during stimulation in each session. The results showed improved ongoing inhibition, prepotent inhibition, working memory, and decision making, but not set-shifting performance, during real, as compared to sham stimulation. This indicates that simultaneous stimulation of the dlPFC and the vmPFC improves hot and cold executive functions in children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulação Transcraniana por Corrente Contínua , Criança , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Função Executiva/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Córtex Pré-Frontal/fisiologia , Memória de Curto Prazo/fisiologia
18.
Neuroimage ; 290: 120572, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490584

RESUMO

Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Motor/fisiologia , Inibição Psicológica , Ritmo beta/fisiologia , Transmissão Sináptica
19.
Elife ; 122024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547008

RESUMO

In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual's subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants' subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.


Neuromodulation is a type of intervention that relies on various non-invasive techniques to temporarily stimulate the brain and nervous system. It can be used for the treatment of depression or other medical conditions, as well as the improvement of cognitive abilities such as attention. However, there is conflicting evidence regarding whether this approach has beneficial effects. Most studies aiming to assess the efficiency of a treatment rely on examining the outcomes of people who received the intervention in comparison to participants who undergo a similar procedure with no therapeutic effect (or placebo). However, the influence of other, 'subjective' factors on these results ­ such as the type of intervention participants think they have received ­ remains poorly investigated. To bridge this gap, Fassi and Hochman et al. used statistical modeling to assess how patients' beliefs about their treatment affected the results of four neuromodulation studies on mind wandering, depression and attention deficit hyperactivity disorder symptoms. In two studies, participants' perceptions of their treatment status were more strongly linked to changes in depression scores and mind-wandering than the actual treatment. Results were more nuanced in the other two studies. In one of them, participants who received the real neuromodulation but believed they received the placebo showed the most improvement in depressive symptoms; in the other study, subjective beliefs and objective treatment both explained changes in inattention symptoms. Taken together, the results by Fassi and Hochman et al. suggest that factoring in patients' subjective beliefs about their treatment may be necessary in studies of neuromodulation and other interventions like virtual reality or neurofeedback, where participants are immersed in cutting-edge research settings and might therefore be more susceptible to develop beliefs about treatment efficacy.


Assuntos
Neurorretroalimentação , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Humanos , Neurorretroalimentação/métodos , Estimulação Magnética Transcraniana , Resultado do Tratamento , Masculino
20.
Exp Biol Med (Maywood) ; 249: 10030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496331

RESUMO

High body mass index (BMI) is presumed to signify high amounts of fat (subcutaneous adipose tissue) distributed across the body. High amounts of fat co-occurring with increased BMI has been cited as a potential neuroimaging barrier. Presence of increased fat may result in high electrical impedance and increased light diffusion-resulting in low signal to noise ratios during electroencepholography (EEG), functional near-infrared spectroscopy (fNIRS), and transcranial direct current stimulation (tDCS) measurements. Examining if subcutaneous fat in the head increases with respect to total body fat percentage and BMI in school-aged children and adolescents is an essential next step in developing possible mathematical corrections for neuroimaging modalities. We hypothesized that percentage of subcutaneous adipose tissue in the head region would increase with respect to both total body fat percentage and BMI. Increased subcutaneous head fat percentage was associated with a positive linear relationship with BMI and a quadratic relationship with total body fat. The data indicate that participant age, sex, and adiposity should be considered in the development of model corrections for neuroimaging signal processing in school-aged children and adolescents. Strength of regression coefficients in our models differed from those in adults, indicating that age-specific models should be utilized.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Criança , Adolescente , Humanos , Adulto Jovem , Índice de Massa Corporal , Obesidade , Gordura Subcutânea/diagnóstico por imagem , Neuroimagem Funcional , Tecido Adiposo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...